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Abstract

Fully developed laminar ~ow in a curved square channel with peripheral wall conduction is examined[ The wall
average Nusselt number\ Nu\ is presented as a function of four parameters] the wall conduction parameter\ f\ the
Prandtl number\ and two Grashof numbers\ Grg and Grc\ which represent the gravitational and centrifugal forces\
respectively\ present in a variable density ~uid[ Numerical solutions are presented for 3[3 ³ De ³ 109[8\ 9[90 ³ f ³ 19[9\
and 9[90 ³ Pr ³ 6[1[ For constant De\ curved channel mixed convection Nu values are demonstrated to be reduced
below the curved channel forced convection values due to a weakening of the secondary ~ow _eld[ A curve illustrating
the relationship between fe}\ de_ned as the value of f at which a constant wall temperature boundary condition can be
assumed\ and De is presented[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a width or height of a curved square channel
Cp speci_c heat
dp¦:dz¦ dimensionless axial pressure gradient
De Dean number\ �Re"Dh:R#0:1

Dh hydraulic diameter
f friction factor
` gravitational acceleration
Gr? gravitational Grashof number as de_ned in ð05\ 07Ð
19Ł
Grc centrifugal Grashof number\ �bWÞ 1D3

hqý:Rn1kf

Grg gravitational Grashof number\ �b`D3
hqý:n1kf

h¹ average heat transfer coe.cient
H0 constant peripheral wall temperature boundary
condition
H1 constant peripheral heat ~ux boundary condition
I\ J X and Y nodal points on numerical calculation grid
k thermal conductivity
n¦ dimensionless normal coordinate
Nu Nusselt number\ �h¹Dh:kf\ �0:"T¦

w −T¦
b #

p¦ dimensionless pressure\ �P:"rn1:D1
h#

� Corresponding author[ Tel] 990 405 757 6618

P pressure
Pe Peclet number\ �WDh:af

Pr Prandtl number\ �n:a
qý heat transferred per unit surface area of channel wall
q1 internal heat generation per unit volume
r¦ dimensionless radius of curvature\ �R:Dh

R radius of curvature of a curved square channel
Ra Rayleigh number\ �Grg Pr
Ra? Rayleigh number as de_ned in ð11Ł
Re Reynolds number\ �WDh:nf\ �w¦

S source term
t duct wall thickness
T temperature
T¦ dimensionless temperature\ �"T−T9#:"qýDh:kf#
u¦\ v¦\ w¦ dimensionless velocity components\
�"U\ V\ W#Dh:n
U\ V\ W velocity components in the X!\ Y!\ and Z!
directions
w¦ average dimensionless axial velocity
W average axial velocity
x¦\ y¦\ z¦ dimensionless coordinates\ �"X\ Y\ Z#:Dh

X\ Y\ Z Cartesian coordinates[

Greek symbols
a thermal di}usivity
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b coe.cient of volumetric expansion
G di}usion coe.cient in the SIMPLE algorithm
o convergence criterion used in the numerical procedure
m dynamic viscosity
n kinematic viscosity
r density
s dependent variable in the SIMPLE algorithm
f dimensionless wall conduction parameter\
�kwt:kfDh[

Subscripts
b bulk
e} value at which Nu � 9[88NuH0

f ~uid
i\ j nodal points on numerical grid
l local value
s value for a straight channel
T total
w wall
9 reference value\ or forced convection value
� reference value
s value corresponding to a particular dependent vari!
able[

0[ Introduction

With engineering applications as diverse as compact
heat exchangers and turbine blade and rocket engine
cooling passages\ the study of curved channel ~uid ~ow
and heat transfer has been accorded widespread attention
in recent years[ One of the more interesting aspects of
curved channel ~ows is the introduction of a secondary
~ow pattern in the duct cross!section resulting from the
imbalance developed between the centrifugal force and
the radial pressure _elds[ Eustice ð0\ 1Ł was the _rst to
demonstrate the existence of this secondary ~ow pattern
by injecting dyes into a curved pipe ~ow stream[ Dean|s
subsequent analytical studies ð2\ 3Ł determined that
curved pipe ~ow could be characterized by a single par!
ameter\ the Dean number\ De[ A key assumption in both
of Dean|s early studies was that the radius of curvature
R was signi_cantly larger than a\ where a in this case
represented the pipe radius\ which would at _rst glance
appear to be a rather limiting case[ Recent studies "Cheng
et al[ ð4Ł\ Thangam and Hur ð5Ł\ and Gia and Sokhey ð6Ł#
on curved rectangular ducts\ however\ indicate that the
curvature e}ect is completely contained within the Dean
number for values of r¦ as low as from 2Ð09[ It appears\
therefore\ that De is the governing parameter in curved
channel ~ow for a much wider range of r¦ values than
Dean|s original formulation would imply[

The secondary ~ow pattern which distinguishes curved
channel ~ows presents itself\ over an initial range of De\
as a single pair of counter!rotating vortices placed sym!
metrically above and below the channel|s horizontal cent!

erline[ At higher values of De an additional pair of coun!
ter!rotating vortices appears near the outer wall\ a
transition known as Dean|s Instability[ The e}ect of this
enhanced secondary ~ow\ as well as the distortions to the
~uid axial velocity pro_les occurring in a curved channel\
on local and overall channel heat transfer performance
has been the central focus of numerous analytical and
experimental studies examining curved channels with
polar\ circular\ elliptic and rectangular cross!sections[
The vast majority of these studies have assumed that ~uid
density is constant[ Overall heat transfer rates in curved
channels have been shown to be signi_cantly increased
due to the presence of the secondary ~ow _eld[ Mori and
Nakayama ð7Ł noted a four! to six!fold increase in Nu
over the value for a straight pipe for De ranging from
499Ð0999[ Mori et al[ ð8Ł presented both analytical and
experimental data for curved square channels subject to
intense secondary ~ows\ and hypothesized that the ~uid
~ow and temperature _elds could be divided into two
regions] a core wherein ~uid viscosity and heat con!
duction are dominated by the inertial e}ect of the sec!
ondary ~ow\ and a boundary layer near the channel wall
where viscosity and conduction e}ects must be
considered[ The data presented indicated a dramatic
increase in Nu with increased De[ In a study of forced
convection in curved rectangular channels with aspect
ratios ranging between 9[1 and 4[9 by Cheng and Aki!
yama ð09Ł\ the authors indicated that changes in either
Pr or De have a signi_cant e}ect on Nu\ a conclusion
reported once again by Zapryanov et al[ ð00Ł in their
examination of curved tubes[ Komiyama et al[ ð01Ł exam!
ined forced convection in rectangular channels with
aspect ratios ranging from 9[7Ð4[9 and a curvature ratio\
r¦\ equal to 099[9[ Local Nusselt number pro_les were
presented along the channel|s four walls\ and the data
con_rmed that local heat transfer rates were maximized
along the outer wall[ However\ the authors noted that at
elevated values of De\ Nul is minimized at the central part
of the outer wall due to the appearance of a region of
stagnation ~ow[ Data for curved square channels were
presented by Hwang and Chao ð02Ł\ who also included
the e}ect of ~uid axial conduction in low Pe ~ows[ The
authors correlated Nu with the product Pr De1[

Other studies have analyzed the combined e}ect of
channel curvature and ~uid buoyancy[ However\ the
studies which have sought to include the e}ect of ~uid
buoyancy have\ without exception\ neglected the in~u!
ence of variable density in the transverse or radial direc!
tion\ thereby limiting their analysis to a study of the
in~uence of gravitational buoyancy forces alone on
curved channel ~ow and heat transfer[ In the discussion
to follow\ only gravitational buoyancy and constant den!
sity centrifugal forces are considered by the investigators[
Yao and Berger ð03Ł examined both horizontal and ver!
tical curved tubes subject to a uniform axial temperature
gradient\ and noted the e}ect of buoyancy forces on the



T[W[ Gyves et al[:Int[ J[ Heat Mass Transfer 31 "0888# 1904Ð1918 1906

secondary ~ow streamlines[ In the presence of even a
moderate buoyancy force "Re Ra� 0999#\ the stream!
lines were rotated nearly 34> clockwise in the duct cross!
section\ and the authors noted that at su.ciently high
values of this parameter\ the dividing streamline sep!
arating the counter!rotating vortices appears in the vertical
direction rather than in the usual horizontal direction[
The authors presented correlations for both horizontal
and vertical tube Nusselt numbers as a function of Pr\
Re\ Ra\ and De[ Prusa and Yao ð04Ł examined curved
heated tubes subject to a constant axial temperature
gradient\ and noted a drastic reduction in the mass ~ow
rate due to the presence of the curvature!induced sec!
ondary ~ow pattern[ Secondary ~ow streamline plots
illustrating the interaction of centrifugal forces and buoy!
ancy forces were presented for three values of Re Ra\ the
parameter which measures the strength of the buoyancy
forces in the ~uid[ The authors identi_ed three ~ow
regimes in curved tubes under the in~uence of buoyancy
forces\ one corresponding to ~ows dominated by cen!
trifugal forces\ one for buoyancy dominated ~ows\ and
the third representing ~ows in which both forces are
signi_cant[ These regimes are represented graphically as
a function of De and Re Ra[ Lee et al[ ð05Ł examined the
in~uence of buoyancy on fully developed laminar ~ow
heat transfer in curved tubes under thermal boundary
conditions of axially uniform heat ~ux and peripherally
uniform wall temperature[ The results presented clearly
indicate that heat transfer rates in curved tubes are
enhanced by the e}ect of gravitational buoyancy\ which
serves to further increase the intensity of the secondary
~ow _eld present in a curved channel[ However\ the
authors noted that the e}ect of buoyancy on Nu decreases
as De increases and the ~ow is increasingly dominated by
centrifugal forces[ Two very interesting regimes can be
noted in the data presented[ In the _rst\ centrifugal forces
are seen to dominate ~ow regardless of the value of Gr?[
This holds for Gr?:De1 ³ 1[4[ Conversely\ buoyancy for!
ces are dominant irrespective of the value of De for
Gr?:De1 × 09[ Plots of secondary ~ow streamlines are
skewed towards a vertical line of symmetry when gravi!
tational buoyancy is included[ Dong and Ebadian fol!
lowed their earlier analysis ð06Ł of curved elliptic channel
~ows with an examination of the e}ect of a buoyancy!
induced secondary ~ow on the friction factor and Nu
in curved elliptic ducts ð07Ł[ The boundary conditions
considered were axially uniform heat ~ux and per!
ipherally uniform wall temperature[ Once again\ the
buoyancy force was found to disrupt the symmetry of
the secondary ~ow streamlines\ with the counter!rotating
vortices no longer symmetric about the horizontal axis[
With buoyancy forces included\ this line of symmetry
was disturbed\ with the center of the upper and lower
vortices shifting toward the outer and inner walls\ respec!
tively[ The data presented indicate that De decreases and
the friction factor and Nu both increase with increased

values of Gr?[ Sankar et al[ ð08Ł performed a numerical
study of mixed convection in curved square channels with
thermal boundary conditions of peripherally uniform
wall temperature and axially uniform heat ~ux[ Forced
and mixed convection results for both the friction factor
ratio f Re:f Res and Nusselt number ratio Nu:Nus are
provided for Pr � 9[62 over a wide range of De and Gr?
values[ The authors noted that the e}ect of gravitational
buoyancy forces is to increase the secondary ~ow and
thus increase both the ~ow resistance and heat transfer
rate[ Goering et al[ ð19Ł have recently analyzed the in~u!
ence of gravitational buoyancy in fully developed curved
tube ~ow for both the uniform peripheral wall tem!
perature "H0# and uniform peripheral wall heat ~ux "H1#
thermal boundary conditions[ It is important to note that
their study is the _rst known analysis of the H1 boundary
condition in curved tube buoyant ~ow[ Each of the
curved channel buoyancy studies cited above employed
the H0 boundary condition\ and the results presented by
Goering et al[ for the boundary condition are in agree!
ment with these earlier studies\ indicating that the e}ect
of buoyancy was to increase both the friction factor and
the Nusselt number relative to the forced convection case[
Data presented for the constant peripheral wall heat ~ux
boundary condition indicated that the e}ect of buoyancy
was to reduce both the friction factor and the Nusselt
number relative to the forced convection case[ The
authors attribute this surprising result to a reduction in
secondary ~ow _eld intensity resulting from a strati!
_cation of the ~uid temperature _eld which is caused by
the peripheral wall temperature variation associated with
the H1 boundary condition[ This weakening of the sec!
ondary ~ow _eld\ and the resulting reduction in Nu below
its forced convection value\ will be shown in the present
study to occur in curved square channels for both the H0
and H1 boundary conditions[

The curved channel studies published to date have all
been limited by their adoption of the idealized H0 or H1
thermal boundary conditions[ These boundary con!
ditions are typically employed in order to simplify the
analytical model\ but they hide one of the more inter!
esting aspects of the problem at hand\ namely\ the per!
ipheral conduction which occurs in the channel wall itself[
One must assume that the channel wall material has an
in_nitely high value of thermal conductivity in order for
the H0 condition to accurately model the system[ Con!
versely\ the H1 boundary condition requires that the
channel wall have a zero thermal conductivity\ in which
case all heat generated within the wall in a speci_c control
volume is transferred directly to the ~uid at that same
location without any peripheral conduction[ Eckert and
Irvine ð10Ł noted that a wall conduction parameter\ f\
could be employed to characterize the conjugated nature
of the channel ~ow problem\ and the present analysis
provides Nu solutions for a complete range of values of
this parameter\ including the idealized asymptotic solu!
tions NuH0 and NuH1[



T[W[ Gyves et al[:Int[ J[ Heat Mass Transfer 31 "0888# 1904Ð19181907

1[ Analysis

The curved square channel is illustrated in Fig[ 0[ Flow
is assumed to be laminar\ fully developed and steady\ and
~uid density variations with temperature are modeled
using the Boussinesq approximation[ All other physical
properties are assumed constant[ It is further assumed
that the radius of curvature\ R\ is large compared to the
channel dimension a[ As such\ the model neglects all
terms of the order 0:R and 0:R1\ with the exception of
the centrifugal force term[ The exterior channel surface
is adiabatic\ and the rate of internal heat generation is
uniform throughout the channel walls\ which are
assumed to be su.ciently thin such that channel wall
conduction can be modeled as one!dimensional along
the channel perimeter[ The governing equations can be
written as follows ð09\ 01Ł]

Continuity equation

1U
1X

¦
1V
1Y

� 9[ "0#

Momentum equations

r $U
1U
1X

¦V
1U
1Y%� −

1P
1X

¦r
W1

R
¦m $

11U

1X1
¦

11U

1Y1%
"1#

Fig[ 0[ Curved channel coordinate system[

r $U
1V
1X

¦V
1V
1Y%� −

1P
1Y

−r`¦m $
11V

1X1
¦

11V

1Y1% "2#

r $U
1W
1X

¦V
1W
1Y%� −

1P
1Z

¦m $
11W

1X1
¦

11W

1Y1%[ "3#

Fluid energy equation

rCp $U
1T
1X

¦V
1T
1Y

¦W
1T
1Z%� k $

11T

1X1
¦

11T

1Y1%[ "4#

The present analysis also assumes that the curved channel
~ow can be modeled as a parabolic ~ow _eld\ which
results in a signi_cant degree of simpli_cation in the gov!
erning equations[ The dominant ~ow direction in curved
channels is axial\ and the ~ow can be categorized as
parabolic in that direction[ Convection will dominate
di}usion in this direction and hence\ the axial di}usion
terms which appear in the NavierÐStokes equations can
be ignored[ The ~uid pressure _eld is assumed to be
{decoupled| in parabolic ~ows\ with the total ~uid pres!
sure at any point\ PT\ considered to be the sum of a cross!
stream average pressure\ P9"Z#\ which is a function of
the streamwise coordinate alone\ and a pressure P"X\ Y#
which varies in the cross!stream direction[ That is

PT � P9"Z#¦P"X\ Y# "5#
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with the pressure _eld in the transverse direction\ P"X\ Y#\
represented as follows "see ð07\ 11Ð13Ł#]

P"X\ Y# � P?"X\ Y#−r�`Y¦r�

W1

R
X[ "6#

For fully developed ~ow\ the axial pressure gradient\
1P9:1Z\ is constant[ Noting that "1PT:1X# �"1P:1X# and
"1PT:1Y# �"1P:1Y#\ we can then write the following
expressions for the transverse pressure gradients]

1PT

1X
�

1P?
1X

¦
r�W1

R
¦

1r�WX
R

1W
1X

"7#

and

1PT

1Y
�

1P?
1Y

−r�`¦
1r�WX

R
1W
1Y

[ "8#

The last terms in equations "7# and "8# are neglected in
the present analysis\ since both are of order 0:R[ This
simpli_cation is utilized in the development of the gov!
erning equations "0#Ð"4# and is valid only in the case of
large channel radius of curvature[

Rearranging the body force terms in the X! and Y!
momentum equations\ the governing equations for the
present system can be written in the following form "in
the equations below\ P? is noted simply as P for clarity#]

Continuity equation

1U
1X

¦
1V
1Y

� 9[ "09#

Momentum equations]

r $U
1U
1X

¦V
1U
1Y%� −

1P
1X

¦ðr−r�Ł
W1

R

¦m $
11U

1X1
¦

11U

1Y1% "00#

r $U
1V
1X

¦V
1V
1Y%� −

1P
1Y

¦ðr�−rŁ`¦m $
11V

1X1
¦

11V

1Y1%
"01#

r $U
1W
1X

¦V
1W
1Y%� −

1P
1Z

¦m $
11W

1X1
¦

11W

1Y1%[ "02#

Fluid energy equation

rCp $U
1T
1X

¦V
1T
1Y

¦W
1T
1Z%� k $

11T

1X1
¦

11T

1Y1%[ "03#

The buoyancy terms which appear in the X! and Y!
momentum equations above can be rewritten in terms of
the Boussinesq approximation[ We can then express the
body force terms which appear in these two equations in
the following manner]

ðr−r�Ł
W1

R
� −r�b"T−T�#

W1

R
"04#

and

ðr�−rŁ` � r�b"T−T�#`[ "05#

Substitution of the dimensionless variables listed in the
nomenclature leads to the following set of dimensionless
equations]

1u¦

1x¦
¦

1v¦

1y¦
� 9 "06#

u¦ 1u¦

1x¦
¦v¦ 1u¦

1y¦
� −

1p¦

1x¦
−GrcT

¦¦
11u¦

1x¦1
¦

11u¦

1y¦1

"07#

u¦ 1v¦

1x¦
¦v¦ 1v¦

1y¦
� −

1p¦

1y¦
¦GrgT

¦¦
11v¦

1x¦1
¦

11v¦

1y¦1

"08#

u¦ 1w¦

1x¦
¦v¦ 1w¦

1y¦
� −

1p¦

1z¦
¦

11w¦

1x¦1
¦

11w¦

1y¦1
"19#

u¦ 1T¦

1x¦
¦v¦ 1T¦

1y¦
¦w¦ 1T¦

1z¦
�

0
Pr $

11T¦

1x¦1
¦

11T¦

1y¦1 %[
"10#

The equations are subject to the following boundary con!
ditions]

At the channel wall

u¦ � v¦ � w¦ � 9[ "11#

The energy equations for the channel walls are derived
by balancing the net conduction across a typical control
volume with the rate of internal heat generation and the
convection heat transfer between the wall and ~uid[ For
example\ the left wall equation may be written as]

kwt"0#
d1Tw

dY1
dY¦q1t dY"0# � −kf dY"0# 0

dT
dX1wÐf

[ "12#

Employing the de_nitions for the dimensionless tem!
perature and the wall conduction parameter\ f\ the left
wall energy equation becomes

f
d1T¦

w

dy¦1
¦0¦0

dT¦

dx¦1wÐf

� 9[ "13#

The equations for the remaining walls can be easily
derived in a similar manner[

The appearance of the parameter f in the wall energy
equations is a direct consequence of the conjugated
nature of this system[ Eckert and Irvine ð10Ł were the
_rst to identify this important parameter in a study of
convective heat transfer in triangular ducts[ It is helpful
at this point to examine its physical interpretation\ since
it plays a signi_cant role in the analysis to follow[ We
have de_ned f as

f �
kwt
kfDh

"14#

and as can be readily seen\ in_nitely large or small values
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of this parameter describe two distinct thermal boundary
conditions[ In the _rst of these "i[e[ f : �#\ the channel
wall is termed {thermally thick|\ with kw and:or t assuming
asymptotically large values[ In this case one would expect
that the channel wall would act as a strong agent for
conducting the heat generated in any section to neigh!
boring areas[ The result would therefore be a channel
with nearly uniform wall temperatures along the entire
perimeter\ a situation very similar to that predicted by the
H0 boundary condition[ For asymptotically low values of
f "i[e[\ f : 9#\ the channel wall is termed {thermally thin|[
A number of factors can contribute to such a condition\
including extremely low values of kw and t\ or very large
values of kf[ Poor wall conductivity\ coupled with a mini!
mal path of resistance "i[e[\ small t# between the wall and
the ~uid would result in the energy generated within the
wall at any point being transferred to the ~uid at that
same location through convection\ rather than being con!
ducted along the wall perimeter as described in the _rst
case above[ Since the assumption is made that the internal
heat generation is uniform around the perimeter\ this
would result in a constant wall!to!~uid heat ~ux around
the channel perimeter\ commonly referred to as the H1
boundary condition[

2[ Numerical solution

Patankar ð14Ł notes that the basic equation governing
all analytical models of heat and mass transfer and ~uid
~ow is a conservation equation which includes both con!
vection and di}usion terms\ as well as an appropriate
source term[ This general equation can be written as
follows]

9 ="rUÞs# � 9 ="Gs9s#¦Ss[ "15#

Here\ UÞ is the three!dimensional velocity vector with X\
Y\ and Z components\ and G and S are the di}usion
coe.cient and source term\ respectively\ corresponding
to a particular dependent variable s[ The dependent vari!
able s can represent dimensional or dimensionless quan!
tities\ such as a velocity component "U or u¦\ as in the
case of the x¦!momentum equation#\ or the ~uid tem!
perature "T or T¦\ as in the case of the ~uid energy
equation#[ This generalized conservation equation can
be written in terms of dimensionless variables\ with s

representing a dimensionless dependent variable\ and G
and S the appropriate di}usion coe.cient and source
term\ respectively[ In Cartesian!tensor form\ the "steady
state# dimensionless conservation equation can be written
as follows]

1

1xi

"uis# �
1

1xi 0Gs

1s

1xi1¦Ss[ "16#

In the case of the dimensionless x!momentum equation\
we have the following]

s � u¦ "17#

and

Gs � 0[ "18#

The expressions for the dependent variable\ s\ the
di}usion coe.cient\ Gs\ and the appropriate source term\
Ss for each of the dimensionless equations are de_ned in
Table 0[

The solution procedure employed in the present study
is based upon the algorithm outlined in Patankar\ work!
ing in conjunction with a new subroutine to account
for the thermal boundary condition of peripheral wall
conduction and wall!to!~uid convection[ For given
values of r¦\ dp¦:dz¦\ Pr\ Grg\ Grc\ and f\ the numerical
solution procedure starts with an initial guess for u¦\ v¦\
w¦\ T¦\ and p¦ at each nodal location[ Updated values
for all dependent parameters are then obtained using the
SIMPLE algorithm\ with the convective and di}usive
terms formulated using a power!law scheme[ The wall
energy subroutine provides updated wall temperature
data at each iteration[ This iterative procedure is then
repeated until the following convergence criterion is sat!
is_ed at each node]

sk¦0
i\ j −sk

i\ j

sk¦0
i\ j

³ os "29#

where s represents u¦\ v¦\ w¦\ and T¦\ the subscripts i\
j refer to nodes on the numerical grid\ and k¦0 refers to
the latest iteration[ The following values for the con!
vergence criterion\ o\ were selected and used throughout
the analysis]

ou¦\ v¦ � 09−2 "20#

ow¦\ T¦ � 09−3[ "21#

These convergence parameter values are similar to those
utilized by Komiyama et al[ and Cheng et al[ "o � 09−2#
and Dong and Ebadian "o � 09−3#[ A range of under!
relaxation factors was employed during the calculation
procedures to assist in obtaining a convergent solution[
Values ranging from 9[14 to 9[4 were used depending
upon the magnitude of Grg and Grc\ with the smaller
relaxation factors utilized at higher values of Grg and Grc[

The numerical results of primary interest in the present
study are the calculated values for the Dean number "De#\

Table 0
Dimensionless conservation equation variables

s Gs Ss

u 0 Su � −Grc T
v 0 Sv � ¦Grg T
w 0 Sw � −"dp:dz#
T 0:Pr ST � −3"w:Re Pr#
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friction factor " f # and the average Nusselt number "Nu#[
The Dean number is de_ned as

De �
Re

r¦9[4
[ "22#

The Reynolds number\ Re\ which appears in this equa!
tion is based upon the cross!sectional averaged axial vel!
ocity W\ calculated by integrating over the channel cross!
section]

W �
ÐW dx dy
Ð dx dy

[ "23#

The friction factor based upon the channel hydraulic
diameter\ fDh

\ is given by

fDh
�

−1"dP:dZ#Dh

rW1
[ "24#

Applying the de_nitions for the dimensionless variables
p¦ and z¦\ it can be easily shown that the product of
the friction factor and Reynolds number reduces to the
following simpli_ed expression

f Re � −1
dp¦:dz¦

w¦
[ "25#

The average wall!to!~uid heat transfer coe.cient\ h¹\ is
de_ned as follows]

h¹ �
qý

Tw−Tb

"26#

where qý represents the heat ~ux between the channel
wall and the ~uid\ TÞw is the average wall temperature
around the channel perimeter\ and Tb is the ~uid bulk
temperature[ The average Nusselt number\ Nu\ can be
expressed as

Nu �
0

T¦
w −T¦

b

[ "27#

In the present analysis\ T¦
w is the arithmetic average of

the calculated wall temperatures at each wall node
around the channel perimeter\ i[e[\

T¦
w �

0
n

s
n

i�0

T¦
i "28#

where n represents the number of wall nodes and T¦
i is

the temperature at wall node i[ The dimensionless ~uid
bulk temperature\ T¦

b \ is calculated in a manner similar
to that outlined for W above\ i[e[

T¦
b �

ÐT¦w¦ dx¦ dy¦

Ðw¦ dx¦ dy¦
[ "39#

Numerical results for the curved channel ~ow _eld
and Nu have been obtained using 29×29 and 39×39
numerical grids\ with the latter employed at higher values
of De[ This grid resolution is comparable to that
employed by Cheng and Akiyama "21×21# and Komi!
yama et al[ and Cheng et al[ "19×19# in their analyses

of curved square channels[ Curved channel data were
obtained using a curvature ratio of r¦ � 099[ In addition\
several straight channel solutions are presented for the
asymptotic case of an in_nite radius of curvature "i[e[\
r¦ : �#[ For the purposes of the present study\ a straight
channel is modeled using a radius of curvature of
r¦ � 0999[

3[ Results and discussion

3[0[ Strai`ht square channels

3[0[0[ Forced convection ~ow _eld "Gr` � 9#
The numerical solution yielded a value for the product

of the friction factor and Re of f Re� 03[052\ which is in
good agreement with the value of 03[116 presented in
Shah and London ð15Ł[

3[0[1[ Mixed convection ~ow _eld "Gr` �9#
The e}ect of gravitational buoyancy in a straight chan!

nel with constant peripheral wall temperature was ana!
lyzed by setting f � 19\ and the results are illustrated in
Fig[ 1"a#\ where streamlines are presented for the case of
Grg � 14 999 and Pr � 9[62[ The following expression
"see Gyves ð16Ł# is utilized to relate the data obtained in
the present study with that presented by Cheng and
Hwang ð11Ł]

Re Ra? � 3Grg[ "30#

In order to compare the results presented in this earlier
study for the case of Re Ra? � 0[92E¦4\ the value of Grg

in the present analysis was set at 14 999[ Figure 1"a# is in
excellent agreement with the results presented by Cheng
and Hwang[ The gravitational buoyancy forces produce
a pair of counter!rotating vortices which are symmetric
about the vertical centerline of the channel "x¦ � 9[4#\
and the streamline magnitudes closely approximate those
presented earlier[ It is interesting to note that the center of
circulation is shifted below the horizontal line y¦ � 9[4\
indicating that the strongest secondary ~ow occurs in the
lower half of the channel cross!section[

The e}ect of buoyancy forces on the straight channel
friction factor is demonstrated in Fig[ 1"b#\ where results
for fRe:fRe9 "the subscript indicating the forced con!
vection value# are presented and compared once again to
data previously reported by Cheng and Hwang for the
constant peripheral wall temperature boundary condition
and Pr � 9[62[ The data o}er strong evidence that the
secondary ~ow pattern which is produced by the buoy!
ancy forces results in an increase in friction resistance
above that found in straight channel forced convection[

3[0[2[ Conju`ated forced convection heat transfer
"Gr` � 9#

The numerical solution for conjugated forced con!
vection heat transfer in a straight square channel is illus!
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Fig[ 1[ Straight channel mixed convection ~ow _eld "r¦ � 0999\ Pr � 9[62\ f � 19[9#] "a# streamlines "Grg � 14 999#^ "b# friction factor
ratio[

trated in Fig[ 2\ where Nu is presented as a function of
the wall conduction parameter\ f[ "The mixed convection
data presented in Fig[ 2 is discussed below in Section
3[0[4[# The forced convection solution is represented by
the curve Grg � 9[ To the authors| knowledge these

Fig[ 2[ Straight channel conjugated forced and mixed convection
"r¦ � 0999\ Grc � 9#[

results have not been previously presented[ The asymp!
totic solutions for the simpli_ed boundary conditions of
uniform peripheral wall temperature and uniform per!
ipheral heat ~ux at a given cross!section were calculated
by assigning f values of 19[9 and 9[90\ respectively[ The
calculated results for the H0 and H1 boundary conditions
are Nu � 2[502 and 2[986\ respectively[ These solutions
are in excellent agreement with data available in the
literature "see\ for example\ Shah and London ð15Ł\ who
report the values 2[597 and 2[980#[ If we de_ne a new
parameter\ fe}\ termed the e}ective wall conduction par!
ameter\ as that value of f at which the value of Nu is
equal to 88) of the value corresponding to f � �"i[e[\
the constant wall temperature asymptotic solution#\ the
solution for straight channel forced convection indicates
that fe} � 0[64[

3[0[3[ Mixed convection heat transfer*H0 boundary
condition "Gr` � 9#

The ability of the present numerical procedure to accu!
rately model mixed convection heat transfer in a straight
channel was ascertained by comparing the numerical
results for Nu with those presented by Cheng and Hwang
ð11Ł for the following conditions]

Pr � 6[19\ 149 ¾ Grg ¾ 1499

Pr � 9[62\ 1499 ¾ Grg ¾ 14 999[

The numerical results were obtained for f � 19 in order
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Fig[ 3[ Straight channel mixed convection*H0 boundary con!
dition "r¦ � 0999\ f � 19[9#[

to match the constant wall temperature boundary con!
dition of the earlier study[ A plot of Nu:Nu9 "once again\
the subscript denotes the forced convection solution\
Nu9 � 2[502#\ as a function of Re Ra? is presented in Fig[
3[ The numerical results are once again found to be in
excellent agreement with the previously published data\
and indicate that increased buoyancy enhances the over!
all straight channel heat transfer rate[ It is clear that the
buoyancy!induced secondary ~ow pattern present in the
mixed convection system serves to promote heat transfer
between the channel wall and ~uid[ In addition\ it is
interesting to note the strong in~uence of Pr on overall
duct heat transfer rates\ with Nu increasing quite dra!
matically as Pr is increased for _xed values of Re Ra?[

3[0[4[ Conju`ated mixed convection heat transfer
"Gr` � 9#

The e}ect of gravitational buoyancy on straight chan!
nel conjugated heat transfer is illustrated in Fig[ 2[ Here\
curves of Nu vs[ f are presented for three values of the
parameter Pr Grg\ which is the functional relationship
suggested by a scale analysis performed on the governing
equations "see Gyves ð16Ł#[ Here we note the signi_cant
impact of buoyancy on overall heat transfer rates over
the entire range of values for the wall conduction
parameter\ with increased buoyancy resulting in
enhanced heat transfer rates for both the constant wall
temperature boundary condition "as had been dem!
onstrated earlier by Cheng and Hwang ð11Ł# and the
constant wall ~ux boundary condition "i[e[\ f � 9#[ As
noted earlier\ the buoyancy forces lead to the devel!
opment of a secondary ~ow _eld consisting of two coun!
ter rotating vortices which are symmetric about the ver!
tical centerline of the channel[ The data presented in Fig[
2 indicate that this enhanced ~ow pattern has a signi_cant

impact on overall channel heat transfer performance[ In
addition\ we note that the value of the mixed convection
fe} is reduced to 9[5¾ fe} ¾ 9[7 for the range of values
of Pr and Grg considered[ This represents a 44Ð54)
decrease in the value of fe} below the forced convection
value of 0[64[

3[1[ Curved square channels

3[1[0[ Forced convection ~ow _eld "Gr` � Grc � 9#
Curved channel ~ows are characterized by the devel!

opment of a secondary cross!stream ~ow pattern con!
sisting of two counter!rotating vortices at lower values
of De and four vortices at higher values of De[ Figures
4"a#Ð"d# illustrate the development and intensi_cation of
this secondary ~ow _eld at increasing values of De[ The
present results indicate a transition to a four vortex ~ow
pattern at De � 040[0\ which is in close agreement with
the results presented by Joseph et al[ ð17Ł\ who noted a
transition at De � 040[7\ as well as those of Ghia and
Sokhey ð6Ł\ who predicted a value of De � 032[ The solu!
tions for the Dean Number and the friction factor ratio
"i[e[\ the ratio of the curved channel f Re to the straight
channel f Res# at various values of the axial pressure
gradient are presented in Table 1\ and are found to be
in good agreement with data published in three earlier
studies[

3[1[1[ Mixed convection ~ow _eld "Gr` and Grc � 9#
For mixed convection systems\ the e}ects of both

gravitational "Grg# and centrifugal "Grc# buoyancy on the
secondary ~ow _eld are presented in Figs 5"a# and "b#
for the thermal boundary condition speci_ed by f � 0[9[
As can be seen by comparing Figs 4 and 5\ the con!
_guration of counter!rotating vortices located sym!
metrically about the horizontal channel centerline has
been replaced by non!symmetric vortices skewed at an
angle with the horizontal axis[ As noted by Dong and
Ebadian ð07Ł\ gravitational buoyancy forces tend to move
the ~uid in the vertical direction\ whereas constant den!
sity centrifugal forces act in the horizontal direction[ It is
interesting to note that the marked increase in Grg from
6499Ð04 999 in the present case results in only slight
changes to both the magnitude and orientation of the
streamlines[ This would appear to indicate that the cen!
trifugal e}ects are dominant for these values of "Grc# and
"Grg#[

3[1[2[ Conju`ated forced convection heat transfer
"Gr` � Grc � 9#

The curved channel conjugated forced convection Nu
is presented in Fig[ 6 as a function of both f and De[ It
is quite evident that the heat transfer rates for curved
channels are dramatically increased over those of straight
channels\ irrespective of the thermal boundary condition
imposed on the system[ The straight channel solution
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Fig[ 4[ Curved channel secondary ~ow streamlines "r¦ � 099\ Grg � Grc � 9#] "a# De � 44[1^ "b# De � 099[5^ "c# De � 040[0^
"d# De � 109[8[

"r¦ � 0999# has been included to illustrate this point[ For
example\ at De � 099[5\ the overall heat transfer rate is
75) higher than the straight channel heat transfer rate
at f � 0[9[ The results presented earlier indicate that
the secondary ~ow _eld intensi_es as De increases[ This
intensi_ed secondary ~ow leads to more e}ective con!
vective heat transfer between the wall and ~uid and an
increase in the overall heat transfer coe.cient[ Previous
studies ð09\ 01Ł have similarly noted this marked increase

in the curved square channel Nu for the H0 boundary
condition\ and the present study is in qualitative agree!
ment with these earlier _ndings[

A second interesting result which the data reveal is the
fact that increases in De serve to accelerate the approach
to a constant wall temperature solution[ That is\ the value
of f at which one may reasonably assume a constant
peripheral wall temperature boundary condition
decreases with increased De[ This is illustrated in Fig[ 7\
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Table 1
Curved channel ~ow _eld solution

dp¦:dz¦ r¦ Grid

Dean number "De# f Re:f Res

Cheng Komiyama Dong and Cheng Komiyama Dong and
Present et al[ et al[ Ebadian Present et al[ et al[ Ebadian
study ð4Ł ð01Ł ð06Ł study ð4Ł ð01Ł ð06Ł

−2849 099 29×29 03[9 02[8 03[9 03[0 0[90 0[90 0[99 0[99
−8999 099 29×29 18[6 18[4 18[7 * 0[96 0[96 0[95 *

−08 999 099 29×29 44[1 43[7 44[3 * 0[10 0[11 0[19 *
−28 499 099 29×29 099[5 099[9 090[7 88[0 0[27 0[30 0[27 0[31
−69 999 099 39×39 040[0 040[0 049[4 * 0[52 0[52 0[52 *

−009 999 099 39×39 109[8 191[5 198[4 190[3 0[72 0[80 0[80 0[81

Fig[ 5[ Curved channel mixed convection streamlines "r¦ � 099\ Pr � 0\ f � 0#] "a# Grc � 06 999\ Grg � 6499\ De � 54[7^
"b# Grc � 06 999\ Grg � 04 999\ De � 54[1[

where fe} is plotted against De[ This curve demonstrates
that for De × 29\ the value of Nu in a curved square
channel is very closely approximated by the asymptotic
H0 solution for f − 9[2[ From a practical engineering
standpoint\ then\ curved channels need not be con!
structed of expensive materials with high thermal con!
ductivities[ Materials with a kw which yields a value of
f � 9[2 will provide the maximum heat transfer[ From
an analytical standpoint\ this result provides guidance as
to the point at which one must consider peripheral wall
conduction a factor in the analysis[ Straight square chan!
nels\ it should be noted\ do not bene_t from any sec!
ondary ~ow "i[e[\ in the absence of gravitational buoy!
ancy forces#\ and as noted earlier\ the value of f at which

the constant wall temperature Nu can be approximated
is 0[64\ nearly six times the curved channel result[ The
bene_t of improved heat transfer in curved channels must
of course be weighed against the additional pump horse!
power requirements resulting from the increased wall
friction present in curved channel ~ows[

3[1[3[ Mixed convection heat transfer*H0 boundary
condition "Gr` � 9\ Grc � 9#

As noted earlier\ all prior studies of curved channel
mixed convection have included in their analysis the e}ect
of gravitational buoyancy alone[ The present study mod!
els this simpli_ed system well\ as demonstrated in Fig[
8[Here\ the solution for Nu:Nu9 "here\ Nu9 represents the
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Fig[ 6[ Curved channel conjugated forced convection "r¦ � 099\
Grg � Grc � 9#[

Fig[ 7[ Curved channel e}ective wall conduction parameter vari!
ation with De "r¦ � 099\ Grg � Grc � 9#[

straight channel forced convection value# as a function
of De and Grg for Pr � 0 and f : � is compared to data
presented by Sankar et al[ ð08Ł for the constant peripheral
wall temperature boundary condition "H0# and
Pr � 9[62[ In both cases\ the solution approaches the
forced convection asymptote "i[e[\ Grg � 9# at large
values of De\ signifying the dominance of centrifugal
forces in this region[

3[1[4[ Conju`ated mixed convection heat transfer "Gr`

and Grc � 9#
The numerical solution to curved channel conjugated

mixed convection is illustrated in Fig[ 09\ with Nu pre!

Fig[ 8[ Curved channel mixed convection*H0 boundary con!
dition "Grg � 9\ Grc � 9\ f : �#[

Fig[ 09[ Curved channel conjugated mixed convection "r¦ � 099\
Grg � 6499 and 04 999#[

sented as a function of f for three values of the parameter
Pr Grc\ a functional relationship predicted by a scale
analysis performed on the governing equations "Gyves
ð16Ł#[ The gravitational Grashof number\ Grg\ is the
fourth parameter in these plots[ The results presented in
Fig[ 09 con_rm the earlier conclusion the Grg is a very
weak parameter in curved channel mixed convection
when the e}ects of Grc are also considered[ Increasing
Grg from a value of 6499Ð04 999 has little e}ect on the
overall heat transfer rate over the entire range of values
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of the wall conduction parameter[ Clearly\ centrifugal
e}ects are dominant in curved channel ~ow\ and this
result is not unexpected[ Figure 5"a# and "b# illustrates
that marked increases in Grg do not signi_cantly alter the
secondary ~ow _eld in a curved channel with
Grc � 06 999[ That is\ neither the secondary ~ow _eld
intensity nor the orientation of the streamlines were
found to be signi_cantly altered even when the value of
Grg was increased from 6499Ð04 999[

One of the more interesting _ndings of the present
study is the indication that\ for approximately equal
values of De\ the curved channel mixed convection Nu
values are signi_cantly lower than those for curved chan!
nel forced convection systems for all values of the wall
conduction parameter f[ Here it should be made clear
that we are only including the e}ect of the centrifugal
Grashof number "Grc# on overall heat transfer^ it has
already been demonstrated that the in~uence of Grg is
minimal in curved channels when the e}ects of Grc are
also considered[ This reduction in Nu is illustrated in Fig[
00\ where the forced convection value for De � 099[5
previously presented in Fig[ 6 and the mixed convection
Nu for Pr � 0 and Grc � 23 999 "corresponding to
De � 83[9#\ are compared[ This sharp reduction in Nu
can be directly attributed to the fact that despite their
nearly identical values of De\ the strength of the sec!
ondary ~ow _eld is dramatically reduced when one
includes the centrifugal e}ect of variable ~uid density[
This can be seen by comparing the strength of the mixed
convection secondary ~ow streamlines "De � 83# in Fig[
01 with those of the constant density ~uid "De � 099[5#
in Fig[ 4"b#[ A similar reduction in both the secondary
~ow _eld intensity and Nu was presented by Goering et

Fig[ 00[ E}ect of centrifugal buoyancy on curved channel con!
jugated heat transfer "r¦ � 099\ Pr � 0\ Grg � 9#[

Fig[ 01[ Curved channel mixed convection streamline*De � 83
"r¦ � 099\ Pr � 0\ f � 0\ Grg � 9\ Grc � 23 999#[

al[ ð19Ł in their examination of gravitational buoyancy in
curved tubes\ but only for the H1 boundary condition[

Figure 02 provides additional insight into the reasons
behind this reduction in the value of Nu in the mixed
convection system[ The local Nusselt number is de_ned
as

Nul �
0

T¦
w −T¦

b
0
dT¦

dn¦ 1
and is\ therefore\ directly proportional to the local tem!
perature gradient at the wallÐ~uid interface\ dT¦:dn¦[
Examination of these two _gures indicates that the right
wall Nul values for the two systems are nearly identical
over the middle region of the right "i[e[\ outer# wall[
However\ in both the upper and lower regions of the right
wall the temperature gradients in the forced convection
system are larger than those of the mixed convection
system\ which is an indication that Nul in these areas will
be larger for Grc � 9[ A similar review of the left wall
indicates that the forced convection Nul is once again
higher near the top and bottom of the wall\ while the
mixed convection Nul is greater in the central region of
the left wall[ The local temperature gradients along the
top and bottom walls indicate that the forced convection
Nul is signi_cantly larger along both walls[ Figure 03
illustrates this comparison of the variation of Nul on all
four walls of the curved channel for Grc � 9 and
Grc � 23 999[ The distance along the duct perimeter is
measured in a counter!clockwise fashion\ with the bot!
tom left corner as the starting point[ The data presented
in Fig[ 03 is in qualitative agreement with that presented
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Fig[ 02[ Curved channel temperature contours] "a# forced convection system at De � 099[5 "r¦ � 099\ Grg � Grc � 9\ Pr � 0\ f � 0#^
"b# mixed convection system at De � 83 "r¦ � 099\ Grg � 9\ Grc � 23 999\ Pr � 0\ f � 0#[

Fig[ 03[ Curved channel local Nusselt number pro_les for forced
and mixed convection systems "r¦ � 099\ Pr � 0\ Grg � 9\
f � 0#[

by Sankar et al[ for De � 21 and Pr � 9[62[ Thus\ the
decrease in Nu at Grc � 23 999 can be explained in terms
of changes in both the ~uid ~ow _eld and temperature
_eld[

4[ Conclusions

The numerical solution to conjugated forced con!
vection in straight and curved channels has been pre!
sented for the _rst time\ and the asymptotic straight chan!

nel solutions for f : 9 "H1# and f : � "H0# have been
shown to be in strong agreement with data reported pre!
viously in the literature[ The dramatic increase in the
curved channel forced convection Nu over the straight
channel Nu for all values of f has been documented for
Grg � Grc � 9[ It has been demonstrated that one can
safely assume a constant peripheral wall temperature
boundary condition in forced convection systems when
De × 29 and f − 9[2[ The development of a secondary
~ow _eld in curved channels is illustrated\ and the
increase in Nu in curved channels can be attributed to
the presence of these secondary ~ow vortices[ Similarly\
increases in gravitational buoyancy\ Grg\ have been
shown to increase heat transfer in straight channels due
to the introduction of a secondary ~ow _eld in the chan!
nel cross!section[

Conjugated mixed convection for fully developed ~ow
in curved square channels has been investigated for a
wide range of values of the wall conduction parameter\
f[ Fluid density variations in both the radial and vertical
directions have been examined[ For the range of par!
ameters included in the present study\ changes in gravi!
tational buoyancy "Grg# have been shown to have a neg!
ligible e}ect on Nu when the in~uence of centrifugal
buoyancy "Grc# is included[ For constant De\ mixed con!
vection Nu values are shown to be signi_cantly reduced
below the corresponding forced convection values due to
a weakening of the secondary ~ow _eld and modi_cations
to the ~uid temperature distribution in the channel cross!
section[ This reduction in Nu occurs over the entire range
of values of the wall conduction parameter f\ and not
simply for the asymptotic case of f : 9 "i[e[\ for the H1
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boundary condition# as has been previously reported by
Goering et al[ for the case of curved tubes[

References

ð0Ł J[ Eustice\ Flow of water in curved pipes\ Proceedings of
the Royal Society of London\ Ser[ A 73 "0809# 096Ð007[

ð1Ł J[ Eustice\ Experiments on streamline motion in curved
pipes\ Proceedings of the Royal Society of London\ Ser[ A
74 "0800# 008Ð020[

ð2Ł W[R[ Dean\ Note on the motion of ~uid in a curved pipe\
Philosophy Magazine 19 "0816# 197Ð112[

ð3Ł W[R[ Dean\ The stream!line motion of ~uid in a curved
pipe\ Philosophy Magazine 29 "0817# 562Ð584[

ð4Ł K[C[ Cheng\ R[C[ Lin\ J[W[ Ou\ Fully developed laminar
~ow in curved rectangular channels\ ASME Journal of
Fluids Engineering 87 "0865# 30Ð37[

ð5Ł S[ Thangam\ N[ Hur\ Laminar secondary ~ows in curved
rectangular ducts\ Journal of Fluid Mechanics 106 "0889#
310Ð339[

ð6Ł K[N[ Ghia\ J[S[ Sokhey\ Laminar incompressible viscous
~ow in curved ducts of regular cross!sections\ ASME Jour!
nal of Fluids Engineering 88 "0866# 539Ð537[

ð7Ł Y[ Mori\ W[ Nakayama\ Study on forced convective heat
transfer in curved pipes\ International Journal of Heat and
Mass Transfer 09 "0856# 570Ð584[

ð8Ł Y[ Mori\ Y[ Uchida\ T[ Ukon\ Forced convective heat
transfer in a curved channel with a square cross!section\
International Journal of Heat and Mass Transfer 03 "0860#
0676Ð0794[

ð09Ł K[C[ Cheng\ M[ Akiyama\ Laminar forced convection heat
transfer in curved rectangular channels\ International Jour!
nal of Heat and Mass Transfer 02 "0869# 360Ð389[

ð00Ł Z[ Zapryanov\ C[ Christov\ E[ Toshev\ Fully developed
laminar ~ow and heat transfer in curved tubes\ Inter!
national Journal of Heat and Mass Transfer 12 "0879# 762Ð
779[

ð01Ł Y[ Komiyama\ F[ Mikami\ K[ Okui\ T[ Hori\ Laminar
forced convection heat transfer in curved channels of rec!
tangular cross!section\ Heat Transfer Japanese Research
01 "1# "0873# 57Ð80[

ð02Ł G[J[ Hwang\ C[H[ Chao\ Forced laminar convection in a
curved isothermal square duct\ ASME Journal of Heat
Transfer 002 "0880# 37Ð44[

ð03Ł L[S[ Yao\ S[A[ Berger\ Flow in heated curved pipes\ Journal
of Fluid Mechanics 77 "0867# 228Ð243[

ð04Ł J[ Prusa\ L[S[ Yao\ Numerical solution for fully developed
~ow in heated curved tubes\ Journal of Fluid Mechanics
012 "0871# 492Ð411[

ð05Ł J[B[ Lee\ H[A[ Simon\ J[C[F[ Chow\ Buoyancy in developed
laminar curved tube ~ows\ International Journal of Heat
and Mass Transfer 17 "2# "0874# 520Ð539[

ð06Ł Z[F[ Dong\ M[A[ Ebadian\ Numerical analysis of laminar
~ow in curved elliptic ducts\ ASME Journal of Fluids
Engineering 002 "0880# 444Ð451[

ð07Ł Z[F[ Dong\ M[A[ Ebadian\ E}ects of buoyancy on laminar
~ow in curved elliptic ducts\ ASME Journal of Heat Trans!
fer 003 "0881# 825Ð832[

ð08Ł R[ Sankar\ K[ Nandakumar\ J[H[ Masliyah\ Mixed con!
vection in heated curved square ducts\ in] Proceedings of
the Eighth International Heat Transfer Conference\ 0875\
pp[ 0396Ð0301[

ð19Ł D[J[ Goering\ J[A[C[ Humphrey\ R[ Greif\ The dual in~u!
ence of curvature and buoyancy in fully developed tube
~ows\ International Journal of Heat and Mass Transfer 39
"8# "0886# 1076Ð1088[

ð10Ł E[R[G[ Eckert\ T[F[ Irvine\ Jr[\ Pressure drop and heat
transfer in a duct with triangular cross!section\ ASME
Journal of Heat Transfer\ 0859\ pp[ 014Ð027[

ð11Ł K[C[ Cheng\ G[ Hwang\ Numerical solution for combined
free and forced laminar convection in horizontal rec!
tangular channels\ ASME Journal of Heat Transfer\ 0858\
pp[ 48Ð55[

ð12Ł H[ Miyazaki\ Combined free and forced convective heat
transfer and ~uid ~ow in rotating curved rectangular tubes\
ASME Journal of Heat Transfer\ 0852\ pp[ 53Ð60[

ð13Ł F[ Ladeinde\ K[E[ Torrance\ Galerkin _nite element simu!
lation of convection driven by rotation and gravitation\
International Journal for Numerical Methods in Fluids 09
"0889# 36Ð66[

ð14Ł S[V[ Patankar\ Numerical Heat Transfer and Fluid Flow\
Hemisphere\ 0879[

ð15Ł R[K[ Shah\ A[L[ London\ Thermal boundary conditions
and some solutions for laminar duct ~ow forced convection\
ASME Journal of Heat Transfer 85 "0863# 048Ð054[

ð16Ł T[W[ Gyves\ A numerical solution to conjugated mixed
convection heat transfer in curved square channels\ Ph[D[
thesis\ State University of New York at Stony Brook\ Stony
Brook\ NY\ 0886[

ð17Ł B[ Joseph\ E[P[ Smith\ R[J[ Adler\ Numerical treatment of
laminar ~ow in helically coiled tubes of square cross section\
AIChE Journal 10 "4# "0864# 854Ð862[


