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Abstract

Fully developed laminar flow in a curved square channel with peripheral wall conduction is examined. The wall
average Nusselt number, Nu, is presented as a function of four parameters: the wall conduction parameter, ¢, the
Prandtl number, and two Grashof numbers, Gr, and Gr., which represent the gravitational and centrifugal forces,
respectively, present in a variable density fluid. Numerical solutions are presented for 4.4 < De < 210.9,0.01 < ¢ < 20.0,
and 0.01 < Pr < 7.2. For constant De, curved channel mixed convection Nu values are demonstrated to be reduced
below the curved channel forced convection values due to a weakening of the secondary flow field. A curve illustrating
the relationship between ¢.q, defined as the value of ¢ at which a constant wall temperature boundary condition can be
assumed, and De is presented. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

a width or height of a curved square channel
C, specific heat

dp*/dz* dimensionless axial pressure gradient

De Dean number, = Re(D,/R)">

Dy, hydraulic diameter

f friction factor

g gravitational acceleration

G gravitational Grashof number as defined in [16, 18—
20]

Gr. centrifugal Grashof number, = BW?Diq"/Rv’k;
Gr, gravitational Grashof number, = BgDiq"/v?k;

h average heat transfer coefficient

H1 constant peripheral wall temperature boundary
condition

H2 constant peripheral heat flux boundary condition
I,J Xand Y nodal points on numerical calculation grid
k  thermal conductivity

n*  dimensionless normal coordinate

Nu Nusselt number, =D, /k, =1/(T{—Ty)

p* dimensionless pressure, = P/(pv*/D3)

* Corresponding author. Tel: 001 516 868 7729

P pressure o
Pe Peclet number, = WD, /o
Pr  Prandtl number, =v/a

"

q" heat transferred per unit surface area of channel wall
q” internal heat generation per unit volume

r*  dimensionless radius of curvature, = R/D,,

R radius of curvature of a curved square channel

Ra Rayleigh number, =Gr, Pr

Ra’  Rayleigh number as defined in [22]

Re Reynolds number, :I/T/Dh/vf, =w"

S source term

t duct wall thickness

T temperature

T+ dimensionless temperature, = (T— Ty)/(q" Dy/ky)
u*t, v*, w' dimensionless velocity components,
=(U,V, W)D,/v

U, V, W velocity components in the X-, Y-, and Z-
directions

w?"  average dimensionless axial velocity

W average axial velocity

x*, y*, z* dimensionless coordinates, = (X, Y, Z)/D,
X, Y, Z Cartesian coordinates.

Greek symbols
o thermal diffusivity
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B coefficient of volumetric expansion

I' diffusion coefficient in the SIMPLE algorithm

¢ convergence criterion used in the numerical procedure
1 dynamic viscosity

v kinematic viscosity

p density

o dependent variable in the SIMPLE algorithm

¢ dimensionless wall conduction parameter,
=kyt/kDy,.

Subscripts

b bulk o o

eff value at which Nu = 0.99 Nu,,,

f fluid

i,j nodal points on numerical grid

1 local value

s value for a straight channel

T total

w  wall

0 reference value, or forced convection value
oo reference value

o value corresponding to a particular dependent vari-
able.

1. Introduction

With engineering applications as diverse as compact
heat exchangers and turbine blade and rocket engine
cooling passages, the study of curved channel fluid flow
and heat transfer has been accorded widespread attention
in recent years. One of the more interesting aspects of
curved channel flows is the introduction of a secondary
flow pattern in the duct cross-section resulting from the
imbalance developed between the centrifugal force and
the radial pressure fields. Eustice [1, 2] was the first to
demonstrate the existence of this secondary flow pattern
by injecting dyes into a curved pipe flow stream. Dean’s
subsequent analytical studies [3, 4] determined that
curved pipe flow could be characterized by a single par-
ameter, the Dean number, De. A key assumption in both
of Dean’s early studies was that the radius of curvature
R was significantly larger than @, where a in this case
represented the pipe radius, which would at first glance
appear to be a rather limiting case. Recent studies (Cheng
et al. [5], Thangam and Hur [6], and Gia and Sokhey [7])
on curved rectangular ducts, however, indicate that the
curvature effect is completely contained within the Dean
number for values of * as low as from 3-10. It appears,
therefore, that De is the governing parameter in curved
channel flow for a much wider range of r* values than
Dean’s original formulation would imply.

The secondary flow pattern which distinguishes curved
channel flows presents itself, over an initial range of De,
as a single pair of counter-rotating vortices placed sym-
metrically above and below the channel’s horizontal cent-

erline. At higher values of De an additional pair of coun-
ter-rotating vortices appears near the outer wall, a
transition known as Dean’s Instability. The effect of this
enhanced secondary flow, as well as the distortions to the
fluid axial velocity profiles occurring in a curved channel,
on local and overall channel heat transfer performance
has been the central focus of numerous analytical and
experimental studies examining curved channels with
polar, circular, elliptic and rectangular cross-sections.
The vast majority of these studies have assumed that fluid
density is constant. Overall heat transfer rates in curved
channels have been shown to be significantly increased
due to the presence of the secondary flow field. Mori and
Nakayama [8] noted a four- to six-fold increase in Nu
over the value for a straight pipe for De ranging from
500-1000. Mori et al. [9] presented both analytical and
experimental data for curved square channels subject to
intense secondary flows, and hypothesized that the fluid
flow and temperature fields could be divided into two
regions: a core wherein fluid viscosity and heat con-
duction are dominated by the inertial effect of the sec-
ondary flow, and a boundary layer near the channel wall
where viscosity and conduction effects must be
considered. The data presented indicated a dramatic
increase in Nu with increased De. In a study of forced
convection in curved rectangular channels with aspect
ratios ranging between 0.2 and 5.0 by Cheng and Aki-
yama [10], the authors indicated that changes in either
Pr or De have a significant effect on Nu, a conclusion
reported once again by Zapryanov et al. [11] in their
examination of curved tubes. Komiyama et al. [12] exam-
ined forced convection in rectangular channels with
aspect ratios ranging from 0.8-5.0 and a curvature ratio,
r*, equal to 100.0. Local Nusselt number profiles were
presented along the channel’s four walls, and the data
confirmed that local heat transfer rates were maximized
along the outer wall. However, the authors noted that at
elevated values of De, Nu, is minimized at the central part
of the outer wall due to the appearance of a region of
stagnation flow. Data for curved square channels were
presented by Hwang and Chao [13], who also included
the effect of fluid axial conduction in low Pe flows. The
authors correlated Nu with the product Pr De?.

Other studies have analyzed the combined effect of
channel curvature and fluid buoyancy. However, the
studies which have sought to include the effect of fluid
buoyancy have, without exception, neglected the influ-
ence of variable density in the transverse or radial direc-
tion, thereby limiting their analysis to a study of the
influence of gravitational buoyancy forces alone on
curved channel flow and heat transfer. In the discussion
to follow, only gravitational buoyancy and constant den-
sity centrifugal forces are considered by the investigators.
Yao and Berger [14] examined both horizontal and ver-
tical curved tubes subject to a uniform axial temperature
gradient, and noted the effect of buoyancy forces on the
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secondary flow streamlines. In the presence of even a
moderate buoyancy force (Re Ra = 1000), the stream-
lines were rotated nearly 45° clockwise in the duct cross-
section, and the authors noted that at sufficiently high
values of this parameter, the dividing streamline sep-
arating the counter-rotating vortices appears in the vertical
direction rather than in the usual horizontal direction.
The authors presented correlations for both horizontal
and vertical tube Nusselt numbers as a function of Pr,
Re, Ra, and De. Prusa and Yao [15] examined curved
heated tubes subject to a constant axial temperature
gradient, and noted a drastic reduction in the mass flow
rate due to the presence of the curvature-induced sec-
ondary flow pattern. Secondary flow streamline plots
illustrating the interaction of centrifugal forces and buoy-
ancy forces were presented for three values of Re Ra, the
parameter which measures the strength of the buoyancy
forces in the fluid. The authors identified three flow
regimes in curved tubes under the influence of buoyancy
forces, one corresponding to flows dominated by cen-
trifugal forces, one for buoyancy dominated flows, and
the third representing flows in which both forces are
significant. These regimes are represented graphically as
a function of De and Re Ra. Lee et al. [16] examined the
influence of buoyancy on fully developed laminar flow
heat transfer in curved tubes under thermal boundary
conditions of axially uniform heat flux and peripherally
uniform wall temperature. The results presented clearly
indicate that heat transfer rates in curved tubes are
enhanced by the effect of gravitational buoyancy, which
serves to further increase the intensity of the secondary
flow field present in a curved channel. However, the
authors noted that the effect of buoyancy on Nu decreases
as De increases and the flow is increasingly dominated by
centrifugal forces. Two very interesting regimes can be
noted in the data presented. In the first, centrifugal forces
are seen to dominate flow regardless of the value of Gr'.
This holds for Gr’/De* < 2.5. Conversely, buoyancy for-
ces are dominant irrespective of the value of De for
Gr'/De* > 10. Plots of secondary flow streamlines are
skewed towards a vertical line of symmetry when gravi-
tational buoyancy is included. Dong and Ebadian fol-
lowed their earlier analysis [17] of curved elliptic channel
flows with an examination of the effect of a buoyancy-
induced secondary flow on the friction factor and Nu
in curved elliptic ducts [18]. The boundary conditions
considered were axially uniform heat flux and per-
ipherally uniform wall temperature. Once again, the
buoyancy force was found to disrupt the symmetry of
the secondary flow streamlines, with the counter-rotating
vortices no longer symmetric about the horizontal axis.
With buoyancy forces included, this line of symmetry
was disturbed, with the center of the upper and lower
vortices shifting toward the outer and inner walls, respec-
tively. The data presented indicate that De decreases and
the friction factor and Nu both increase with increased

values of Gr’. Sankar et al. [19] performed a numerical
study of mixed convection in curved square channels with
thermal boundary conditions of peripherally uniform
wall temperature and axially uniform heat flux. Forced
and mixed convection results for both the friction factor
ratio fRe/f Re, and Nusselt number ratio Nu/Nu, are
provided for Pr = 0.73 over a wide range of De and Gr’
values. The authors noted that the effect of gravitational
buoyancy forces is to increase the secondary flow and
thus increase both the flow resistance and heat transfer
rate. Goering et al. [20] have recently analyzed the influ-
ence of gravitational buoyancy in fully developed curved
tube flow for both the uniform peripheral wall tem-
perature (H1) and uniform peripheral wall heat flux (H2)
thermal boundary conditions. It is important to note that
their study is the first known analysis of the H2 boundary
condition in curved tube buoyant flow. Each of the
curved channel buoyancy studies cited above employed
the H1 boundary condition, and the results presented by
Goering et al. for the boundary condition are in agree-
ment with these earlier studies, indicating that the effect
of buoyancy was to increase both the friction factor and
the Nusselt number relative to the forced convection case.
Data presented for the constant peripheral wall heat flux
boundary condition indicated that the effect of buoyancy
was to reduce both the friction factor and the Nusselt
number relative to the forced convection case. The
authors attribute this surprising result to a reduction in
secondary flow field intensity resulting from a strati-
fication of the fluid temperature field which is caused by
the peripheral wall temperature variation associated with
the H2 boundary condition. This weakening of the sec-
ondary flow field, and the resulting reduction in Nu below
its forced convection value, will be shown in the present
study to occur in curved square channels for both the H1
and H2 boundary conditions.

The curved channel studies published to date have all
been limited by their adoption of the idealized H1 or H2
thermal boundary conditions. These boundary con-
ditions are typically employed in order to simplify the
analytical model, but they hide one of the more inter-
esting aspects of the problem at hand, namely, the per-
ipheral conduction which occurs in the channel wall itself.
One must assume that the channel wall material has an
infinitely high value of thermal conductivity in order for
the H1 condition to accurately model the system. Con-
versely, the H2 boundary condition requires that the
channel wall have a zero thermal conductivity, in which
case all heat generated within the wall in a specific control
volume is transferred directly to the fluid at that same
location without any peripheral conduction. Eckert and
Irvine [21] noted that a wall conduction parameter, ¢,
could be employed to characterize the conjugated nature
of the channel flow problem, and the present analysis
provides Nu solutions for a complete range of values of
this parameter, including the idealized asymptotic solu-
tions Nuy, and Nuy,.
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2. Analysis

The curved square channel is illustrated in Fig. 1. Flow
is assumed to be laminar, fully developed and steady, and
fluid density variations with temperature are modeled
using the Boussinesq approximation. All other physical
properties are assumed constant. It is further assumed
that the radius of curvature, R, is large compared to the
channel dimension a. As such, the model neglects all
terms of the order 1/R and 1/R? with the exception of
the centrifugal force term. The exterior channel surface
is adiabatic, and the rate of internal heat generation is
uniform throughout the channel walls, which are
assumed to be sufficiently thin such that channel wall
conduction can be modeled as one-dimensional along
the channel perimeter. The governing equations can be
written as follows [10, 12]:

Continuity equation

oL

ox oy

Momentum equations

Pl%ax ™oy |~ "ax TP R TH o T oy
(2)

0. )

] [P
PlYex T oy |T "oy PITH

ox*  oy?
yW W ep T 2w W
Pl%ax "oy | Tz o Ty |

Fluid energy equation

or oT ~aT T T
: ®)

[)Cp |:U5/+V87Y+Wa:| =k|:aX2 +@Y2

The present analysis also assumes that the curved channel
flow can be modeled as a parabolic flow field, which
results in a significant degree of simplification in the gov-
erning equations. The dominant flow direction in curved
channels is axial, and the flow can be categorized as
parabolic in that direction. Convection will dominate
diffusion in this direction and hence, the axial diffusion
terms which appear in the Navier-Stokes equations can
be ignored. The fluid pressure field is assumed to be
‘decoupled’ in parabolic flows, with the total fluid pres-
sure at any point, Pr, considered to be the sum of a cross-
stream average pressure, Py(Z), which is a function of
the streamwise coordinate alone, and a pressure P(X, Y)
which varies in the cross-stream direction. That is

PT=P0(Z)+P(X5Y) (6)

WU\
|y

Fig. 1. Curved channel coordinate system.
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with the pressure field in the transverse direction, P(X, Y),
represented as follows (see [18, 22-24]):

2

w

For fully developed flow, the axial pressure gradient,
0P,/0Z, is constant. Noting that (0P1/0X) =(0P/0X) and
(0P1/0Y) =(0P/0Y), we can then write the following
expressions for the transverse pressure gradients:

OPr 0P p WP 20, WXOW 5
X X R R 00X ®)
and

0Py 0P 20, WX OW

o't 0 P (7 (9)

oy oy P9 R oy
The last terms in equations (8) and (9) are neglected in
the present analysis, since both are of order 1/R. This
simplification is utilized in the development of the gov-
erning equations (1)—(5) and is valid only in the case of
large channel radius of curvature.

Rearranging the body force terms in the X- and Y-
momentum equations, the governing equations for the
present system can be written in the following form (in
the equations below, P’ is noted simply as P for clarity):

Continuity equation
v v _
ox "oy

Momentum equations:

oU oU
pl U5 +V

0. (10)

0—P+[ ]K2
ax TWTP-lTR

PU U
+u[ + 4 } (11

ox oy |~

X2 oy?
B IR S O
PI%ax ™ oy |T "oy "W T PTRI ST
(12)

PI Y ox oy |~ Tz Tk ox?  oy? |

Fluid energy equation

B P B e s
POl Vax T oy T oz | T o Tare | )

The buoyancy terms which appear in the X- and Y-
momentum equations above can be rewritten in terms of
the Boussinesq approximation. We can then express the
body force terms which appear in these two equations in
the following manner:

2 2

w w

and

[P —plg = P B(T—T..)g. (16)
Substitution of the dimensionless variables listed in the
nomenclature leads to the following set of dimensionless
equations:

out  ov*t
o o {an
x 0y
u+E+v %— _@ —Gr. T+ AN
ox* oyt ox* ox*t?  oyt?
(18)
a + a S+ a + az S+ 82 S+
+ 0 e _L+GrgT++7L+ v
Ox+ ay* oyt oxt? opt?
19)
owt owt opT  *wt *wt
wr g 2o R O (20)
ox™* ay™* oz Ox* ay™
oT* oTr™* oT+ 1 [e*Tt o°T+
ut — 4ot — 4wt —=— + .
ox™ oyt ozt Prioxt?  ay+?
21

The equations are subject to the following boundary con-
ditions:

At the channel wall

+

ut =vt=wt=0. (22)

The energy equations for the channel walls are derived
by balancing the net conduction across a typical control
volume with the rate of internal heat generation and the
convection heat transfer between the wall and fluid. For
example, the left wall equation may be written as:

d>T, dT
WdY+q’”de(1)=—kde(1)<d—X> . (23)

2
k(1)
dy? wf

Employing the definitions for the dimensionless tem-
perature and the wall conduction parameter, ¢, the left
wall energy equation becomes

2T} dr+
¢>—W+1+< ) =0. (24)
dy*? dx™ Jws

The equations for the remaining walls can be easily
derived in a similar manner.

The appearance of the parameter ¢ in the wall energy
equations is a direct consequence of the conjugated
nature of this system. Eckert and Irvine [21] were the
first to identify this important parameter in a study of
convective heat transfer in triangular ducts. It is helpful
at this point to examine its physical interpretation, since
it plays a significant role in the analysis to follow. We
have defined ¢ as

kyt
¢ - kf'Dh

and as can be readily seen, infinitely large or small values

(25)
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of this parameter describe two distinct thermal boundary
conditions. In the first of these (i.e. ¢ — o0), the channel
wallis termed ‘thermally thick’, with k,, and/or  assuming
asymptotically large values. In this case one would expect
that the channel wall would act as a strong agent for
conducting the heat generated in any section to neigh-
boring areas. The result would therefore be a channel
with nearly uniform wall temperatures along the entire
perimeter, a situation very similar to that predicted by the
H1 boundary condition. For asymptotically low values of
¢ (i.e., ¢ — 0), the channel wall is termed ‘thermally thin’.
A number of factors can contribute to such a condition,
including extremely low values of &, and ¢, or very large
values of k. Poor wall conductivity, coupled with a mini-
mal path of resistance (i.e., small 7) between the wall and
the fluid would result in the energy generated within the
wall at any point being transferred to the fluid at that
same location through convection, rather than being con-
ducted along the wall perimeter as described in the first
case above. Since the assumption is made that the internal
heat generation is uniform around the perimeter, this
would result in a constant wall-to-fluid heat flux around
the channel perimeter, commonly referred to as the H2
boundary condition.

3. Numerical solution

Patankar [25] notes that the basic equation governing
all analytical models of heat and mass transfer and fluid
flow is a conservation equation which includes both con-
vection and diffusion terms, as well as an appropriate
source term. This general equation can be written as
follows:

V+(pUs) = VT ,Vo)+S,. (26)

Here, U is the three-dimensional velocity vector with X,
Y, and Z components, and I" and S are the diffusion
coefficient and source term, respectively, corresponding
to a particular dependent variable . The dependent vari-
able ¢ can represent dimensional or dimensionless quan-
tities, such as a velocity component (U or u*, as in the
case of the x*-momentum equation), or the fluid tem-
perature (7 or T, as in the case of the fluid energy
equation). This generalized conservation equation can
be written in terms of dimensionless variables, with ¢
representing a dimensionless dependent variable, and T’
and S the appropriate diffusion coefficient and source
term, respectively. In Cartesian-tensor form, the (steady
state) dimensionless conservation equation can be written
as follows:

<ra f—”) +S,. 7)
oX;

Wi

0 0
a(“ﬁ ) = i

i

In the case of the dimensionless x-momentum equation,
we have the following:

o=u" (28)
and
r,=1. (29)

The expressions for the dependent variable, o, the
diffusion coefficient, I',, and the appropriate source term,
S, for each of the dimensionless equations are defined in
Table 1.

The solution procedure employed in the present study
is based upon the algorithm outlined in Patankar, work-
ing in conjunction with a new subroutine to account
for the thermal boundary condition of peripheral wall
conduction and wall-to-fluid convection. For given
values of r*, dp*/dz*, Pr, Gr,, Gr,, and ¢, the numerical
solution procedure starts with an initial guess for u™, v™,
wh, T*, and p* at each nodal location. Updated values
for all dependent parameters are then obtained using the
SIMPLE algorithm, with the convective and diffusive
terms formulated using a power-law scheme. The wall
energy subroutine provides updated wall temperature
data at each iteration. This iterative procedure is then
repeated until the following convergence criterion is sat-

isfied at each node:
k+1 k
———<s (30)
i
0ij

where o represents u™, v, w*, and T™, the subscripts i,

j refer to nodes on the numerical grid, and k+ 1 refers to

the latest iteration. The following values for the con-
vergence criterion, ¢, were selected and used throughout
the analysis:

Eyt pt = 1073 (31)
&t T+ = 10~%. (32)
These convergence parameter values are similar to those
utilized by Komiyama et al. and Cheng et al. (¢ = 1077)
and Dong and Ebadian (¢ = 107%). A range of under-
relaxation factors was employed during the calculation
procedures to assist in obtaining a convergent solution.
Values ranging from 0.25 to 0.5 were used depending
upon the magnitude of Gr, and Gr., with the smaller
relaxation factors utilized at higher values of Gr, and Gr..

The numerical results of primary interest in the present
study are the calculated values for the Dean number (De),

Table 1
Dimensionless conservation equation variables

1% r, S,

u 1 S,=—Gr. T

v 1 S, = +Gr,T

w 1 S, = —(dp/dz)

T 1/Pr S;= —4(w/Re Pr)
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friction factor (/) and the average Nusselt number (Nu).
The Dean number is defined as
Re

+0.5°

De =

(33)
-

The Reynolds number, Re, which appears in this equa-
tion is based upon the cross-sectional averaged axial vel-
ocity W, calculated by integrating over the channel cross-
section:
—  |Wdxd
g [Wdxdy
[dxdy
The friction factor based upon the channel hydraulic
diameter, fp,, is given by
_ —2(dP/[dZ)D,
P
Applying the definitions for the dimensionless variables
p*t and z*, it can be easily shown that the product of

the friction factor and Reynolds number reduces to the
following simplified expression

s dp*/dzt .

wt

(34)

/b, (35)

fRe = (36)

The average wall-to-fluid heat transfer coefficient, 7, is
defined as follows:

"

4
LT,
where ¢” represents the heat flux between the channel
wall and the fluid, T, is the average wall temperature
around the channel perimeter, and T, is the fluid bulk
temperature. The average Nusselt number, Nu, can be
expressed as

— 1
Nu=——. (3%)

Ty —T¢
In the present analysis, Ty is the arithmetic average of
the calculated wall temperatures at each wall node
around the channel perimeter, i.c.,
TF =1
Yoo

=

(37)

Y7 (39)

where n represents the number of wall nodes and 7} is
the temperature at wall node i. The dimensionless fluid
bulk temperature, T , is calculated in a manner similar
to that outlined for W above, i.e.

_Trwrdxtdyt
fwdx*tdy* .
Numerical results for the curved channel flow field
and Nu have been obtained using 30 x 30 and 40 x 40
numerical grids, with the latter employed at higher values
of De. This grid resolution is comparable to that

employed by Cheng and Akiyama (32 x 32) and Komi-
yama et al. and Cheng et al. (20 x 20) in their analyses

T+

(40)

of curved square channels. Curved channel data were
obtained using a curvature ratio of ¥* = 100. In addition,
several straight channel solutions are presented for the
asymptotic case of an infinite radius of curvature (i.e.,
r* — o0). For the purposes of the present study, a straight
channel is modeled using a radius of curvature of
r* = 1000.

4. Results and discussion
4.1. Straight square channels

4.1.1. Forced convection flow field (Gr, = 0)

The numerical solution yielded a value for the product
of the friction factor and Re of f Re = 14.163, which is in
good agreement with the value of 14.227 presented in
Shah and London [26].

4.1.2. Mixed convection flow field (Gr, #0)

The effect of gravitational buoyancy in a straight chan-

nel with constant peripheral wall temperature was ana-
lyzed by setting ¢ = 20, and the results are illustrated in
Fig. 2(a), where streamlines are presented for the case of
Gr, = 25000 and Pr = 0.73. The following expression
(see Gyves [27]) is utilized to relate the data obtained in
the present study with that presented by Cheng and
Hwang [22]:
Re Ra’ = 4Gr,. (41)
In order to compare the results presented in this earlier
study for the case of Re Ra’ = 1.03E+5, the value of Gr,
in the present analysis was set at 25000. Figure 2(a) is in
excellent agreement with the results presented by Cheng
and Hwang. The gravitational buoyancy forces produce
a pair of counter-rotating vortices which are symmetric
about the vertical centerline of the channel (x* = 0.5),
and the streamline magnitudes closely approximate those
presented earlier. It is interesting to note that the center of
circulation is shifted below the horizontal line y* = 0.5,
indicating that the strongest secondary flow occurs in the
lower half of the channel cross-section.

The effect of buoyancy forces on the straight channel
friction factor is demonstrated in Fig. 2(b), where results
for fRe/fRe, (the subscript indicating the forced con-
vection value) are presented and compared once again to
data previously reported by Cheng and Hwang for the
constant peripheral wall temperature boundary condition
and Pr = 0.73. The data offer strong evidence that the
secondary flow pattern which is produced by the buoy-
ancy forces results in an increase in friction resistance
above that found in straight channel forced convection.

4.1.3. Conjugated forced convection heat transfer
(Gr, =0)

The numerical solution for conjugated forced con-
vection heat transfer in a straight square channel is illus-
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Present Study
Cheng & Hwang [22]

i 0

-

fRe/fRe,

1.06

e L L l 1 " L 4 l
! 50000 100000
ReRa'

Fig. 2. Straight channel mixed convection flow field (r* = 1000, Pr = 0.73, ¢ = 20.0): (a) streamlines (Gr, = 25000); (b) friction factor

ratio.

trated in Fig. 3, where Nu is presented as a function of
the wall conduction parameter, ¢. (The mixed convection
data presented in Fig. 3 is discussed below in Section
4.1.5.) The forced convection solution is represented by
the curve Gr,=0. To the authors’ knowledge these

1z f
35k T T T T T T
-~
-7
y
3F ——&—— PrGRg= 1.5E+4
- —o—— PrGRg = 3.0E+4
i ———6—— PrGRg= 6.0E+4
25 ———- GRg=0
L ) | L L L ] ] ) ! ) ) i
2 2 3

Fig. 3. Straight channel conjugated forced and mixed convection
(r* = 1000, Gr, = 0).

results have not been previously presented. The asymp-
totic solutions for the simplified boundary conditions of
uniform peripheral wall temperature and uniform per-
ipheral heat flux at a given cross-section were calculated
by assigning ¢ values of 20.0 and 0.01, respectively. The
calculated results for the H1 and H2 boundary conditions
are Nu = 3.613 and 3.097, respectively. These solutions
are in excellent agreement with data available in the
literature (see, for example, Shah and London [26], who
report the values 3.608 and 3.091). If we define a new
parameter, ¢.q, termed the effective wall conduction par-
ameter, as that value of ¢ at which the value of Nu is
equal to 99% of the value corresponding to ¢ = oo(i.e.,
the constant wall temperature asymptotic solution), the
solution for straight channel forced convection indicates
that ¢.q = 1.75.

4.1.4. Mixed convection heat transfer—H1 boundary
condition (Gr, # 0)

The ability of the present numerical procedure to accu-
rately model mixed convection heat transfer in a straight
channel was ascertained by comparing the numerical
results for Nu with those presented by Cheng and Hwang
[22] for the following conditions:

Pr=1720, 250 < Gr, <2500
Pr=0.73, 2500 < Gr, < 25000.

The numerical results were obtained for ¢ = 20 in order
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Fig. 4. Straight channel mixed convection—H1 boundary con-
dition (r* = 1000, ¢ = 20.0).

to match the constant wall temperature boundary con-
dition of the earlier study. A plot of Nu/Nu, (once again,
the subscript denotes the forced convection solution,
Nu, = 3.613), as a function of Re Ra’ is presented in Fig.
4. The numerical results are once again found to be in
excellent agreement with the previously published data,
and indicate that increased buoyancy enhances the over-
all straight channel heat transfer rate. It is clear that the
buoyancy-induced secondary flow pattern present in the
mixed convection system serves to promote heat transfer
between the channel wall and fluid. In addition, it is
interesting to note the strong influence of Pr on overall
duct heat transfer rates, with Nu increasing quite dra-
matically as Pr is increased for fixed values of Re Ra’.

4.1.5. Conjugated mixed convection heat transfer
(Gr, #0)

The effect of gravitational buoyancy on straight chan-
nel conjugated heat transfer is illustrated in Fig. 3. Here,
curves of Nu vs. ¢ are presented for three values of the
parameter Pr Gr,, which is the functional relationship
suggested by a scale analysis performed on the governing
equations (see Gyves [27]). Here we note the significant
impact of buoyancy on overall heat transfer rates over
the entire range of values for the wall conduction
parameter, with increased buoyancy resulting in
enhanced heat transfer rates for both the constant wall
temperature boundary condition (as had been dem-
onstrated earlier by Cheng and Hwang [22]) and the
constant wall flux boundary condition (i.e., ¢ = 0). As
noted earlier, the buoyancy forces lead to the devel-
opment of a secondary flow field consisting of two coun-
ter rotating vortices which are symmetric about the ver-
tical centerline of the channel. The data presented in Fig.
3 indicate that this enhanced flow pattern has a significant

impact on overall channel heat transfer performance. In
addition, we note that the value of the mixed convection
¢ 1s reduced to 0.6 < ¢ < 0.8 for the range of values
of Pr and Gr, considered. This represents a 55-65%
decrease in the value of ¢ 4 below the forced convection
value of 1.75.

4.2. Curved square channels

4.2.1. Forced convection flow field (Gr, = Gr, = 0)

Curved channel flows are characterized by the devel-
opment of a secondary cross-stream flow pattern con-
sisting of two counter-rotating vortices at lower values
of De and four vortices at higher values of De. Figures
5(a)—(d) illustrate the development and intensification of
this secondary flow field at increasing values of De. The
present results indicate a transition to a four vortex flow
pattern at De = 151.1, which is in close agreement with
the results presented by Joseph et al. [28], who noted a
transition at De = 151.8, as well as those of Ghia and
Sokhey [7], who predicted a value of De = 143. The solu-
tions for the Dean Number and the friction factor ratio
(i.e., the ratio of the curved channel f Re to the straight
channel f'Rey) at various values of the axial pressure
gradient are presented in Table 2, and are found to be
in good agreement with data published in three earlier
studies.

4.2.2. Mixed convection flow field (Gr, and Gr, # 0)

For mixed convection systems, the effects of both
gravitational (Gr,) and centrifugal (Gr.) buoyancy on the
secondary flow field are presented in Figs 6(a) and (b)
for the thermal boundary condition specified by ¢ = 1.0.
As can be seen by comparing Figs 5 and 6, the con-
figuration of counter-rotating vortices located sym-
metrically about the horizontal channel centerline has
been replaced by non-symmetric vortices skewed at an
angle with the horizontal axis. As noted by Dong and
Ebadian [18], gravitational buoyancy forces tend to move
the fluid in the vertical direction, whereas constant den-
sity centrifugal forces act in the horizontal direction. It is
interesting to note that the marked increase in Gr, from
7500-15000 in the present case results in only slight
changes to both the magnitude and orientation of the
streamlines. This would appear to indicate that the cen-
trifugal effects are dominant for these values of (Gr,.) and

(Gry).

4.2.3. Conjugated forced convection heat transfer
(Gr, = Gr.=0) o
The curved channel conjugated forced convection Nu
is presented in Fig. 7 as a function of both ¢ and De. It
is quite evident that the heat transfer rates for curved
channels are dramatically increased over those of straight
channels, irrespective of the thermal boundary condition
imposed on the system. The straight channel solution



2024 T.W. Gyves et al./Int. J. Heat Mass Transfer 42 (1999) 2015-2029

1
0.75
Los}
| 3.0,
B hd
025 1
L I
O—LJ'IlIIAAIIILllkl
0 0.25 05 0.75 1

0.75

Los

0.25

1
4.4
y _
0.754 =
H 4.9 >
$os5f- 10
025
| 3
o IR RSN SN TSN ST R S
0 0.25 0.5 0.75 1
X+
1
075
305
025
O0

(d)

Fig. 5. Curved channel secondary flow streamlines (+* = 100, Gr, = Gr. = 0): (a) De = 55.2; (b) De = 100.6; (c) De = 151.1;

(d) De = 210.9.

(r* = 1000) has been included to illustrate this point. For
example, at De = 100.6, the overall heat transfer rate is
86% higher than the straight channel heat transfer rate
at ¢ = 1.0. The results presented earlier indicate that
the secondary flow field intensifies as De increases. This
intensified secondary flow leads to more effective con-
vective heat transfer between the wall and fluid and an
increase in the overall heat transfer coefficient. Previous
studies [10, 12] have similarly noted this marked increase

in the curved square channel Nu for the H1 boundary
condition, and the present study is in qualitative agree-
ment with these earlier findings.

A second interesting result which the data reveal is the
fact that increases in De serve to accelerate the approach
to a constant wall temperature solution. That is, the value
of ¢ at which one may reasonably assume a constant
peripheral wall temperature boundary condition
decreases with increased De. This is illustrated in Fig. 8,
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Table 2
Curved channel flow field solution

Dean number (De) fRe/f Re,
Cheng Komiyama Dong and Cheng Komiyama Dong and
Present et al. et al. Ebadian Present et al. et al. Ebadian
dp*/dzt ot Grid study [5] [12] [17] study [5] [12] [17]
—3950 100 30x30 14.0 13.9 14.0 14.1 1.01 1.01 1.00 1.00
—9000 100 30x30 29.7 29.5 29.8 1.07 1.07 1.06 —
—19000 100  30x30 55.2 54.8 55.4 1.21 1.22 1.20 —
—39500 100 30x30 100.6 100.0 101.8 99.1 1.38 1.41 1.38 1.42
—70000 100 40x40 151.1 151.1 150.5 1.63 1.63 1.63 —
—110000 100 40 x40 210.9 202.6 209.5 201.4 1.83 1.91 1.91 1.92
1 1
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Fig. 6. Curved channel mixed convection streamlines (r*
(b) Gr. = 17000, Gr, = 15000, De = 65.2.

where ¢ is plotted against De. This curve demonstrates
that for De > 30, the value of Nu in a curved square
channel is very closely approximated by the asymptotic
H1 solution for ¢ > 0.3. From a practical engineering
standpoint, then, curved channels need not be con-
structed of expensive materials with high thermal con-
ductivities. Materials with a k,, which yields a value of
¢ = 0.3 will provide the maximum heat transfer. From
an analytical standpoint, this result provides guidance as
to the point at which one must consider peripheral wall
conduction a factor in the analysis. Straight square chan-
nels, it should be noted, do not benefit from any sec-
ondary flow (i.e., in the absence of gravitational buoy-
ancy forces), and as noted earlier, the value of ¢ at which

(b)

=100, Pr=1, ¢ =1): (a) Gr.=17000, Gr,= 7500, De = 65.8;

the constant wall temperature Nu can be approximated
is 1.75, nearly six times the curved channel result. The
benefit of improved heat transfer in curved channels must
of course be weighed against the additional pump horse-
power requirements resulting from the increased wall
friction present in curved channel flows.

4.2.4. Mixed convection heat transfer—H]1 boundary
condition (Gr, # 0,Gr,. = 0)

As noted earlier, all prior studies of curved channel
mixed convection have included in their analysis the effect
of gravitational buoyancy alone. The present study mod-
els this simplified system well, as demonstrated in Fig.
9.Here, the solution for Nu/Nu, (here, Nu, represents the
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Fig. 8. Curved channel effective wall conduction parameter vari-
ation with De (r* = 100, Gr, = Gr, = 0).

straight channel forced convection value) as a function
of De and Gr, for Pr = 1 and ¢ — co is compared to data
presented by Sankar et al. [19] for the constant peripheral
wall temperature boundary condition (H1) and
Pr =0.73. In both cases, the solution approaches the
forced convection asymptote (i.e., Gr,=0) at large
values of De, signifying the dominance of centrifugal
forces in this region.

4.2.5. Conjugated mixed convection heat transfer (Gr,
and Gr, # 0)

The numerical solution to curved channel conjugated
mixed convection is illustrated in Fig. 10, with Nu pre-

025 ~——@— GRg=2E+4,Pr=1.0
—o— GRg=0,Pr=1.0
— —©—~— Sankar[19] - (GRg =0, Pr=0.73)
— ——— Sankar[19] - (GRg = 2E+4, Pr= 0.73)
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Fig. 9. Curved channel mixed convection—H1 boundary con-
dition (Gr, # 0, Gr, =0, ¢ — 0).
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Fig. 10. Curved channel conjugated mixed convection (r* = 100,
Gr, = 7500 and 15 000).

sented as a function of ¢ for three values of the parameter
PrGr,, a functional relationship predicted by a scale
analysis performed on the governing equations (Gyves
[27]). The gravitational Grashof number, Gr,, is the
fourth parameter in these plots. The results presented in
Fig. 10 confirm the earlier conclusion the Gr, is a very
weak parameter in curved channel mixed convection
when the effects of Gr. are also considered. Increasing
Gr, from a value of 7500-15000 has little effect on the
overall heat transfer rate over the entire range of values
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of the wall conduction parameter. Clearly, centrifugal
effects are dominant in curved channel flow, and this
result is not unexpected. Figure 6(a) and (b) illustrates
that marked increases in Gr, do not significantly alter the
secondary flow field in a curved channel with
Gr. = 17000. That is, neither the secondary flow field
intensity nor the orientation of the streamlines were
found to be significantly altered even when the value of
Gr, was increased from 7500-15 000.

One of the more interesting findings of the present
study is the indication that, for approximately equal
values of De, the curved channel mixed convection Nu
values are significantly lower than those for curved chan-
nel forced convection systems for all values of the wall
conduction parameter ¢. Here it should be made clear
that we are only including the effect of the centrifugal
Grashof number (Gr.) on overall heat transfer; it has
already been demonstrated that the influence of Gr, is
minimal in curved channels when the effects of Gr. are
also considered. This reduction in Nu is illustrated in Fig.
11, where the forced convection value for De = 100.6
previously presented in Fig. 7 and the mixed convection
Nu for Pr=1 and Gr,= 34000 (corresponding to
De = 94.0), are compared. This sharp reduction in Nu
can be directly attributed to the fact that despite their
nearly identical values of De, the strength of the sec-
ondary flow field is dramatically reduced when one
includes the centrifugal effect of variable fluid density.
This can be seen by comparing the strength of the mixed
convection secondary flow streamlines (De = 94) in Fig.
12 with those of the constant density fluid (De = 100.6)
in Fig. 5(b). A similar reduction in both the secondary
flow field intensity and Nu was presented by Goering et
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Fig. 11. Effect of centrifugal buoyancy on curved channel con-
jugated heat transfer (r* = 100, Pr = 1, Gr, = 0).
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Fig. 12. Curved channel mixed convection streamline—De = 94
(r* =100, Pr=1,¢ =1, Gr, =0, Gr, = 34000).

al. [20] in their examination of gravitational buoyancy in
curved tubes, but only for the H2 boundary condition.

Figure 13 provides additional insight into the reasons
behind this reduction in the value of Nu in the mixed
convection system. The local Nusselt number is defined
as

1 (dT*)
Nu] =
Ty —T¢ \dnt

and is, therefore, directly proportional to the local tem-
perature gradient at the wall-fluid interface, d7*/dn™.
Examination of these two figures indicates that the right
wall Nu, values for the two systems are nearly identical
over the middle region of the right (i.e., outer) wall.
However, in both the upper and lower regions of the right
wall the temperature gradients in the forced convection
system are larger than those of the mixed convection
system, which is an indication that Nu, in these areas will
be larger for Gr, = 0. A similar review of the left wall
indicates that the forced convection Ny, is once again
higher near the top and bottom of the wall, while the
mixed convection Ny, is greater in the central region of
the left wall. The local temperature gradients along the
top and bottom walls indicate that the forced convection
Nu, is significantly larger along both walls. Figure 14
illustrates this comparison of the variation of Nu, on all
four walls of the curved channel for Gr.,=0 and
Gr. = 34000. The distance along the duct perimeter is
measured in a counter-clockwise fashion, with the bot-
tom left corner as the starting point. The data presented
in Fig. 14 is in qualitative agreement with that presented
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by Sankar et al. for De = 32 and Pr = 0.73. Thus, the
decrease in Nu at Gr. = 34000 can be explained in terms
of changes in both the fluid flow field and temperature
field.

5. Conclusions
The numerical solution to conjugated forced con-

vection in straight and curved channels has been pre-
sented for the first time, and the asymptotic straight chan-

nel solutions for ¢ — 0 (H2) and ¢ — co (H1) have been
shown to be in strong agreement with data reported pre-
viously in the literature. The dramatic increase in the
curved channel forced convection Nu over the straight
channel Nu for all values of ¢ has been documented for
Gr, = Gr. = 0. It has been demonstrated that one can
safely assume a constant peripheral wall temperature
boundary condition in forced convection systems when
De > 30 and ¢ > 0.3. The development of a secondary
flow field in curved channels is illustrated, and the
increase in Nu in curved channels can be attributed to
the presence of these secondary flow vortices. Similarly,
increases in gravitational buoyancy, Gr,, have been
shown to increase heat transfer in straight channels due
to the introduction of a secondary flow field in the chan-
nel cross-section.

Conjugated mixed convection for fully developed flow
in curved square channels has been investigated for a
wide range of values of the wall conduction parameter,
¢. Fluid density variations in both the radial and vertical
directions have been examined. For the range of par-
ameters included in the present study, changes in gravi-
tational buoyancy (Gr,) have been shown to have a neg-
ligible effect on Nu when the influence of centrifugal
buoyancy (Gr.) is included. For constant De, mixed con-
vection Nu values are shown to be significantly reduced
below the corresponding forced convection values due to
a weakening of the secondary flow field and modifications
to the fluid temperature distribution in the channel cross-
section. This reduction in Nu occurs over the entire range
of values of the wall conduction parameter ¢, and not
simply for the asymptotic case of ¢ — 0 (i.e., for the H2
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boundary condition) as has been previously reported by
Goering et al. for the case of curved tubes.
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